Engine - keep it in good technical condition

nd production of mechanical force by the interactions of an electric current and a magnetic field, Amp?re's force law, was discovered later by André-Marie Amp?re in 1820. The conversion of electrical energy into mechanical energy

Engine - keep it in good technical condition reduce smoke Subaru

History of electric motor

Perhaps the first electric motors were simple electrostatic devices created by the Scottish monk Andrew Gordon in the 1740s.2 The theoretical principle behind production of mechanical force by the interactions of an electric current and a magnetic field, Amp?re's force law, was discovered later by André-Marie Amp?re in 1820. The conversion of electrical energy into mechanical energy by electromagnetic means was demonstrated by the British scientist Michael Faraday in 1821. A free-hanging wire was dipped into a pool of mercury, on which a permanent magnet (PM) was placed. When a current was passed through the wire, the wire rotated around the magnet, showing that the current gave rise to a close circular magnetic field around the wire.3 This motor is often demonstrated in physics experiments, brine substituting for toxic mercury. Though Barlow's wheel was an early refinement to this Faraday demonstration, these and similar homopolar motors were to remain unsuited to practical application until late in the century.


Jedlik's "electromagnetic self-rotor", 1827 (Museum of Applied Arts, Budapest). The historic motor still works perfectly today.4
In 1827, Hungarian physicist Ányos Jedlik started experimenting with electromagnetic coils. After Jedlik solved the technical problems of the continuous rotation with the invention of the commutator, he called his early devices "electromagnetic self-rotors". Although they were used only for instructional purposes, in 1828 Jedlik demonstrated the first device to contain the three main components of practical DC motors: the stator, rotor and commutator. The device employed no permanent magnets, as the magnetic fields of both the stationary and revolving components were produced solely by the currents flowing through their windings

Źródło: https://en.wikipedia.org/wiki/Electric_motor


Car issue - public benefits

In countries deprived from wide door-to-door public transport and with low density, such as Australia, the automobile plays an important role on the mobility of citizens. Public transport, by comparison, becomes increasingly uneconomic with lower population densities. Hence cars tend to dominate in rural and suburban environments with public economic gains.

The automobile industry, mainly in the beginning of the 20th century when the high motorization rates were not an issue, had also an important public role, which was the creation of jobs. In 1907, 45,000 cars were produced in The United States, but 28 years later in 1935 3,971,000 were produced, nearly 100 times as many. This increase in production required a large, new work force. In 1913 13,623 people worked at Ford Motor Company, but by 1915 18,028 people worked there.10 Bradford DeLong, author of The Roaring Twenties, tells us that, "Many more lined up outside the Ford factory for chances to work at what appeared to them to be (and, for those who did not mind the pace of the assembly line much, was) an incredible boondoggle of a job.10" There was a surge in the need for workers at big, new high-technology companies such as Ford. Employment largely increased.

Źródło: https://en.wikipedia.org/wiki/Economics_of_car_use


With early induction

Some systems disable alternator field (rotor) power during wide open throttle conditions. Disabling the field reduces alternator pulley mechanical loading to nearly zero, maximizing crankshaft power. In this case the battery supplies all primary electrical power.

Gasoline engines take in a mixture of air and gasoline and compress it by the movement of the piston from bottom dead center to top dead center when the fuel is at maximum compression. The reduction in the size of the swept area of the cylinder and taking into account the volume of the combustion chamber is described by a ratio. Early engines had compression ratios of 6 to 1. As compression ratios were increased the efficiency of the engine increased as well.

With early induction and ignition systems the compression ratios had to be kept low. With advances in fuel technology and combustion management high performance engines can run reliably at 12:1 ratio. With low octane fuel a problem would occur as the compression ratio increased as the fuel was igniting due to the rise in temperature that resulted. Charles Kettering developed a lead additive which allowed higher compression ratios.

The fuel mixture is ignited at difference progressions of the piston in the cylinder. At low rpm the spark is timed to occur close to the piston achieving top dead center. In order to produce more power, as rpm rises the spark is advanced sooner during piston movement. The spark occurs while the fuel is still being compressed progressively more as rpm rises.18

Źródło: https://en.wikipedia.org/wiki/Internal_combustion_engine



© 2019 http://capricornstudio.com.pl/