silniki wycieraczek
Jak działa turbosprężarka?
Obroty sprężarki, a tym samym i jej stopień sprężania zależą od ilości gazów napędzających turbinę, która przy małym zapotrzebowaniu na moc jest mała. Dlatego gdy gwałtownie wzrasta zapotrzebowanie na moc silnika (zmiana biegu, wciśnięcie gazu w celu przyspieszenia) pomimo dostarczenia dodatkowego paliwa, przez moment, aż sprężarka zostanie rozpędzona sprężanie sprężarki jest małe, przez co silnik przez moment ma małą moc. Dodatkowo w tym czasie z powodu mniejszej ilości dostarczonego powietrza do cylindrów, układ dostarczający paliwo nie może dostarczyć go tyle co przy statycznym obciążeniu silnika. Efekt mniejszej mocy silnika przy gwałtownym wzroście zapotrzebowania na moc nazywany jest turbodziurą. Usprawnienia konstrukcyjne sprawiają, że dzisiejsze turbosprężarki mają mniejszy moment bezwładności wirnika, a dawkowanie paliwa jest dokładniejsze, przez co efekt turbodziury jest mniejszy.
W celu ograniczenia tego zjawiska stosuje się też sterowanie wydajnością turbosprężarki. Możliwe są tu dwa sposoby ? sterowanie ilością spalin przepływających poprzez turbinę lub sterowanie geometrią przepływu.
W pierwszym rozwiązaniu stosuje się zawór obejściowy, który jest sterowany poprzez ciśnienie doładowywania ? gdy ciśnienie wytwarzane przez sprężarkę przekracza ustaloną przez konstruktora silnika wartość, zawór otwiera się i przepuszcza część spalin poza wirnikiem turbiny.
Drugim rozwiązaniem jest umieszczenie łopatek sterujących kątem pod jakim spaliny trafiają na łopatki wirnika. Przy małych prędkościach obrotowych silnika, spaliny uderzają w wirnik pod kątem zbliżonym do prostego i jednocześnie łopatki sterujące wytwarzają rodzaj dyszy przyspieszających przepływ spalin. Ograniczenie ciśnienia doładowania polega na kierowaniu strumienia spalin pod coraz ostrzejszym kątem względem łopatek turbiny przy jednoczesnym poszerzeniu kanału przepływu co powoduje ograniczenie prędkości spalin. Konstrukcyjnie rozwiązuje się to w ten sposób, że wirnik turbiny otacza rodzaj żaluzji kierujących przepływem spalin.
Pierwotnie ciśnienie doładowywania było sterowane czysto mechanicznie, we współczesnych silnikach samochodowych ciśnieniem steruje sterownik silnika, wykorzystując sygnały z czujników ciśnienia i ilości zassanego powietrza. Elementami wykonawczymi sterującymi zaworami lub żaluzjami są siłowniki pneumatyczne (wykorzystujące podciśnienie) sterowane elektrozaworami lub silniki krokowe ? tak jak w silniku 1,2 TSI grupy VW
W sprężarce rośnie temperatura powietrza w wyniku:
wzrostu ciśnienia (zgodnie z równaniem adiabaty),
przepływu ciepła przez elementy konstrukcyjne od gorących spalin do chłodniejszego powietrza.
Jest to zjawisko niekorzystne, gdyż obniża efekt działania turbosprężarki, oraz zwiększa temperaturę w momencie spalania. Zwiększenie temperatury wpływa niekorzystnie na elementy silnika, obniża sprawność silnika jak i zwiększa wydzielanie tlenków azotu. Aby obniżyć temperaturę sprężonego powietrza stosowany jest wymiennik ciepła zwany intercoolerem lub chłodnicą międzystopniową powietrza.
Źródło: http://pl.wikipedia.org/wiki/Turbospr%C4%99%C5%BCarka
Historia samochodów
Nad pojazdami napędzanymi parą myślano już w XVII wieku. W 1678 roku Ferdinand Verbiest miał zademonstrować taki pojazd cesarzowi chińskiemu, jednak nie ma na to żadnych dowodów. Dlatego za pierwszego konstruktora ? wynalazcę pojazdu mechanicznego ? uznaje się Francuza o nazwisku Nicolas-Joseph Cugnot, który zaprezentował swoje pionierskie dzieło napędzane silnikiem parowym w roku 1769.
W 1870 roku Austriak Siegfried Marcus skonstruował, nienadający się do powszechnego użytku, prototyp pojazdu mechanicznego z benzynowym silnikiem o zapłonie iskrowym. Z kolei inny konstruktor, Niemiec Carl Benz, zbudował swój trzykołowy automobil w roku 1885 (w 1886 uzyskał patent). W tych samych latach prace w dziedzinie silników spalinowych oraz pojazdów napędzanych takimi silnikami prowadzili wspólnie Wilhelm Maybach i Gottlieb Daimler. Nie wiadomo jednak dokładnie, kto, jako pierwszy, skonstruował zastosowany do napędu samochodów silnik o spalaniu wewnętrznym.
Źródło: https://pl.wikipedia.org/wiki/Samochód
Silnik w układzie podwójnej gwiazdy
Zaletą silników rotacyjnych było dobre chłodzenie silnika (co umożliwiało zastosowanie wysokiego stopnia sprężania) i lekka konstrukcja, zwykle były też dobrze wyważone. Stąd były chętnie stosowane do napędu lekkich myśliwców np. Nieuport czy Sopwith. Efekt żyroskopowy wywoływany przez silnik utrudniał pilotaż, samolot był asymetryczny w pilotażu (zwroty w lewo i w prawo wykonywał z różną prędkością kątową). Było to zmorą dla młodych pilotów, doświadczeni potrafili to wykorzystać w walce. Silniki te miały jednak wady, jak duże zużycie oleju (w obiegu otwartym ? wyrzucanego z cylindrów na zewnątrz), duże zużycie paliwa a przede wszystkim trudność budowania silników większej mocy i o większej prędkości obrotowej. Silnik w układzie podwójnej gwiazdy miał tendencję do przegrzewania się, a duże wirujące masy utrudniały zamocowanie silnika w samolocie. Silniki rotacyjne miały też ograniczoną prędkość obrotową, co utrudniało ich wysilenie (uzyskanie zwiększonej mocy z danej pojemności skokowej). Aby ograniczyć obroty stworzono silnik birotacyjny, w którym cylindry z karterem obracały się w jednym kierunku a wał korbowy w przeciwnym. Znikły problemy z urywającymi się w locie cylindrami lecz wróciły kłopoty z chłodzeniem - silnik ten nie zyskał popularności.
Dodatkowo w silnikach rotacyjnych dochodziło do szybszego zużycia się części pracujących z uwagi na siły Coriolisa, dlatego po I wojnie światowej zaprzestano prac nad ich rozwojem. Jednakże stosowane były w lotnictwie (np. Bartel BM-4a, czy Hanriot H.14) do połowy lat 30.
Nie należy silnika rotacyjnego utożsamiać z silnikiem z tłokiem obrotowym (silnikiem Wankla).
Źródło: https://pl.wikipedia.org/wiki/Silnik_rotacyjny